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Abstract

In this work, different types of honey produced in the Canary Islands were characterized on the basis of their mineral contents.

Overall, 10 metals were determined in 116 samples, 81 of which were from the Canaries and 35 from various other places. Iron,

copper, zinc, magnesium, calcium and strontium were determined by atomic absorption spectrophotometry, and potassium, sodium,

lithium and rubidium by atomic emission spectrophotometry. A flow injection manifold was employed to analyse those samples

requiring dilution. The chemometric processing of the spectroscopic results by various techniques (including principal component

analysis, cluster analysis, discriminant analysis and logistic regression) allowed the accurate classification of the honey samples

according to origin.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Honey is a natural product obtained by bees from

flower nectar or secretions from other living parts of

plants or brought onto them by other insects; bees suck

the nectar, combine it with specific substances and store
it in hive cells for ripening. The composition and prop-

erties of the end-product depend on the botanical origin

of the nectar or secretion used. All types of honey share

certain characteristics, including a moisture content be-

low 20%, a reducing sugar content of 60–65% and a bulk

sucrose content of 5–10% (Ministerio de Sanidad y Con-

sumo, 1985), so these major components cannot be used

to distinguish samples. Rather, it is minor components
that are usually employed to discriminate food samples

and detect potential fraud in their stated origin.
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The floral and geographic origin of honey is usually

determined using the melisso-palynological technique,

application of which, however, requires some expertise

(Anklam, 1998). A number of papers have confirmed

the possibility of characterizing honey samples by quan-

tifying selected chemical parameters (Anklam & Rado-
vic, 2001; Anupama, Bhat, & Sapna, 2003; Conte,

Miorini, Giomo, Bertacco, & Zironi, 1998; Devillers,

Morlot, Pham-Delègue, & Doré, 2004; Paradkar & Iru-

dayaraj, 2001; Pérez Arquillué & Herrera Marteache,

1987; Serrano, Villarejo, Espejo, & Jodral, 2004); a

number of methods for this purpose use gas chromatog-

raphy–mass spectrometry (Bianchi, Careri, & Musci,

2005; Radovic et al., 2001; Soria, Martinez-Castro, &
Sanz, 2003) or an electronic nose (Lammertyn, Vera-

verbeke, & Irudayaraj, 2004). However, determining

inorganic compounds in honey, with a view to its char-

acterization, can be much more simple, expeditious and

economic.

Honey has a rather low mineral content (typically

0.1–0.2% in floral honey and 1% or higher in mellate
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honey) that varies widely depending on the particular

botanical origin, pedoclimatic conditions and extraction

technique. The dominant element in honey is potassium,

followed by chlorine, sulphur, sodium, phosphorus,

magnesium, silicon, iron and copper (La Serna Ramos,

Méndez Pérez, & Gómez Ferreras, 1999). Any marked
deficiency of soil, rocks or water in any particular ele-

ment is reflected in the mineral composition of plants

and hence that of nectar and pollen (J., A., & J.,

1987). Therefore, the contents of metal ions in honey,

which can be determined by various techniques (Buldini,

Cavalli, Mevoli, & Sharma, 2001; López-Garcı́a, Viñas,

Blanco, & Hernández-Córdoba, 1999; Rodrı́guez-Otero,

Paseiro, Simal, & Cepeda, 1994; Sanna, Pilo, Piu, Tap-
paro, & Seeber, 2000; Viñas, López-Garcı́a, Lanzón, &

Hernández-Córdoba, 1997; Yilmaz & Yavuz, 1999),

can help identify its geographical origin as this is consis-

tent with the environmental conditions (Przybylowski &

Wilczynska, 2001).

In fact, the mineral content of honey has been suc-

cessfully correlated with its origin by using various sta-

tistical techniques, including principal component
analysis (PCA), partial least-squares (PLS) regression,

neural networks, cluster analysis, linear discriminant

analysis (LDA), the K nearest neighbour (KNN) and/

or independent modelling of class analogy (SIMCA)

(Latorre, Peña, Garcı́a, & Herrero, 2000; Latorre

et al., 1999; Rashed & Soltan, 2004).

The Canary Islands produce many types of farm-

house honey, some of which are presumably monofloral.
Canary honey varieties span a wide range of originating

flora and microclimatic and atmospheric conditions.

This substantially increases their market value and raises

the need to detect potential frauds in origin or even

adulteration (La Serna Ramos et al., 1999).

In recent years, a pressing need has arisen to find

parameters allowing some products (particularly foods)

to be distinguished in terms of origin. In the Canary Is-
lands, this has been especially so with wines since their

specific designations of origin were established (Bar-

baste, Medina, Sarabia, Ortiz, & Pérez-Trujillo, 2002;

Frı́as, Conde, Rodrı́guez-Bencomo, Garcı́a-Montel-

ongo, & Pérez-Trujillo, 2003; González & Peña-Méndez,

2000; Pérez-Trujillo, Barbaste, & Medina, 2003), and re-

cently with other products (Peláez Puerto, Fresno Ba-

quero, Rodrı́guez Rodrı́guez, Darı́as Martı́n, & Dı́az
Romero, 2004).

Previous studies on honey varieties from the Canaries

and other places revealed that the former, by virtue of

the special climate and vegetation of the Islands, exhibit

chemical and physico-chemical characteristics (e.g. pH,

optical activity, conductivity, total and lactone acidity,

hydroxymethylfurfural contents) that facilitate their dis-

crimination from honey produced in other regions or
even on different islands or different areas on the same

island, as the prevailing local vegetation is to a great ex-
tent dictated by height (Fraga, Hernández, Jiménez,

Jiménez, & Arias, 2000; Fraga, Hernández, Jiménez,

Jiménez, & Arias, 2000).

In this work, alkaline (Na and K), alkaline-earth (Ca,

Mg and Sr) and trace elements (Fe, Cu, Zn, Li and Rb)

were determined in honey samples from the Canaries
and various other places with a view to identifying their

origin.
2. Materials and methods

2.1. Apparatus

Measurements were made on a Varian SpectrAA-10

Plus atomic absorption spectrophotometer equipped

with a deuterium lamp for background correction

and hollow-cathode lamps for each of the elements

studied.

The continuous-flow manifold used included a Gilson

Minipuls-2 peristaltic pump fitted with PVC tubes. All

other tubing and connectors were made of Teflon.

2.2. Reagents

Standard stock solutions of the different metal ions at

a 1000 lg/ml concentration were prepared from Panreac

atomic absorption spectroscopic grade chemicals and

used to make working solutions by appropriate dilution.

Reagent-grade nitric acid, ultrapure de-ionized Milli-
Q water and the surfactant Extran (Merck) were used.

2.3. Glassware cleaning

All glassware was washed with Extran, immersed in

0.1 N nitric acid for 48 h and rinsed with ultrapure

Milli-Q water prior to use in order to avoid potential

contamination.

2.4. Samples

An overall 116 samples of monofloral and multifloral

honey, 81 of which were from the Canary Islands (62

from Tenerife, 8 from La Palma, 9 from Gomera and

2 from Hierro) and the other 35 from various other

places, were studied. The samples were either directly
purchased on the market, supplied by Casa de la Miel

(Tenerife) or obtained from beekeepers.

2.5. Sample preparation

2.5.1. Procedure 1 (47 samples)

About 5 g of honey were placed in a previously

weighed porcelain crucible and heated (first in a stove
and then in a furnace), following the temperature pro-

gramme depicted in Fig. 1. The resulting white ash
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Fig. 1. Temperature programme used in the samples treatment.
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was weighed, dissolved in 3 ml of concentrated nitric

acid and diluted with de-ionized water in a 25 ml cali-

brated flask. The solution was used to determine Fe,

Cu, Zn, K, Na, Mg, Ca, Sr, Li and Rb.

2.5.2. Procedure 2 (proposed by the authors; 116

samples)

About 2.5 g of honey were dissolved in 0.1 M nitric

acid and diluted to 25 ml with more nitric acid in a cal-

ibrated flask. Metal ion contents were directly deter-

mined in the solution.

2.6. Determination of metal ions

The metal ions studied were determined by compar-

ing the atomic spectroscopic signal for each with that

for a standard solution of the same ion.

The determination of Ca and Mg by flame atomic

spectroscopy is usually subject to some chemical interfer-

ences that can be avoided by using a higher-energy flame

for Ca and by adding La2O3 as an Mg releasing agent.

The determination of Na, K, Li and Rb by this technique
is confounded by ionization interferences that entail the

use of some suppressor; thus, the samples used to deter-

mine Na, Li, Rb were supplied with KCl, and those used

to determine K with NaCl. Because these elements were
W
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Fig. 2. Manifold used in the AAS and AES determinations of metal ions. P
present at concentrations outside the linear range of the

atomic spectroscopic techniques used, the samples had

to be diluted. In order to solve both problems simulta-

neously, themanifold of Fig. 2was employed. The sample

and carrier streams were merged in a conical vessel from

which they were aspirated by the nebulizer of the atomic
absorption spectrophotometer, excess sample being aspi-

rated and sent to waste by the peristaltic pump. The sam-

ple and carrier flow-rates were set in such a way as to

avoid interferences and allow the final concentrations of

the elements to fall within the linear metal concentra-

tion-measured signal ranges.

Table 1 shows the composition and flow-rate of the

carrier, as well as the values of the other operating
parameters of interest. The flame composition, wave-

length, lamp intensity and slit width used were those rec-

ommended for each metal ion (Varian, 1989). The

measurement delay time was based on the time taken

by the samples to give a steady signal upon reaching

the flame and the measurement time was chosen so as

to ensure that the standard deviation of the measure-

ments would not exceed 2%. As can be seen, both times
were longer with the FIA system as signals tended to

oscillate over longer periods. Each determination was

performed five times.

2.7. Data processing

The results of the above-described determinations

were processed chemometrically, using various multivar-
iate techniques, as implemented in the statistical soft-

ware package SPSS v. 10.0 for Windows. Each sample

was characterized in terms of 10 variables (the 10 metal

ions studied). This provided a 116 · 10 matrix with

honey types as rows and the metal ions as columns.

Prior to chemometric processing, data were auto-

scaled by subtracting their mean values and dividing

into the standard deviation. A preliminary statistical
analysis was conducted on all samples and variables in

order to identify outliers (i.e. samples with a unique

combination of characteristics enabling their easy

distinction from the others). Such samples must be
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analysed separately as their behaviour may or may not

be a group trend not reflected in the body of samples

and thus require elimination.
3. Results and discussion

3.1. General

Metal ions in honey are usually determined after ash-

ing. This is a labour-intensive, time-consuming process,

so an alternative procedure was sought. To this end, pre-

liminary tests were conducted to determine the metal ion

contents in 47 samples of variable origin, using solutions
obtained from the ashing residue or prepared by dissolv-

ing the honey in 0.1 M nitric acid. The results obtained

with both were highly correlated, so we chose to use ni-

tric solutions in subsequent tests.

3.2. Data reduction

We first examined the contents in the different metal
ions on an individual basis. The values of the univariate

statistical descriptors thus obtained are listed in Table 2.

As can be seen, the samples from Hierro differed clearly

from the rest; however, there were too few to allow their

separate characterization. Also, the Rb contents were

highly disperse, with no clear-cut differences between

groups. Therefore, Rb contributed little information of

use for distinction purposes, so it was excluded from
subsequent studies.

Outliers, in multivariate methodology, were identi-

fied using the Mahalanobis distance, which is a mea-

sure of the distance of each sample in a multi-

dimensional space from the mean centre for the body

of samples. All variables except Rb – for the above-

described reasons – were used to this end. As can be

seen in Fig. 3, three samples exhibited rather a long
distance relative to the rest.

Based on the results of the previous univariate and

multivariate analyses, the following samples were ex-

cluded on account of their low reliability: (a) both

samples from Hierro, which differed markedly from

all others, (b) the three samples with the longest

Mahalanobis distances, which were purchased as Can-

ary but were of dubious origin based on their physical
properties (colour and odour) and on the abnormal

values they had previously exhibited in parameters

other than those studied in this work (e.g. acidity,

moisture content) (Fraga et al., 2000) and (c) five

samples labelled as eucalyptus honey that differed

clearly from those in this group in the preliminary

multivariate analysis.

Once the database was purged by deleting outliers,
variables were re-typified and multivariate analyses were

performed with a twofold purpose, namely: characteriz-



Table 2

Values for metals studied in honey according to their geographical origin

N Statistics Fe (mg/kg) Cu (mg/kg) Zn (mg/kg) K (mg/kg) Na (mg/kg) Mg (mg/kg) Ca (mg/kg) Sr (mg/kg) Li (mg/kg) Rb (mg/kg)

All 116 Mean 4.85 0.37 1.57 1088 70.0 41.0 74.8 0.39 12.18 534

SD 8.76 0.25 2.22 675 53 31.5 34.2 0.27 15.97 670

Minimum 0.40 0.10 0.18 214 9.42 7.25 20.7 0.03 0.00 0.00

Maximum 52.51 1.73 19.1 3166 258 165 193 1.45 110 3193

Tenerife 62 Mean 3.78 0.44 1.65 122 89.6 49.6 74.4 0.37 8.53 606

SD 7.59 0.28 2.90 724 57.8 33.0 37.5 0.25 8.42 625

Minimum 0.41 0.13 0.25 214 11.3 7.70 20.7 0.10 0.00 0.00

Maximum 47.54 1.73 19.1 3166 258 157 193 1.21 35.4 3193

Palma 8 Mean 3.41 0.36 1.18 1353 86.1 35.2 82.0 0.89 11.1 1423

SD 2.27 0.17 0.46 257 25.3 12.7 24.6 0.35 6.37 603

Minimum 1.22 0.22 0.74 984 52.4 17.2 33.4 0.44 3.77 338

Maximum 7.01 0.76 2.08 1664 108 50.5 104 1.45 21.7 2144

Hierro 2 Mean 6.91 0.20 2.43 555 51.8 30.6 57.3 0.33 11.96 228.41

SD 8.37 0.06 2.40 63.2 8.29 8.67 18 0.07 1.62 323

Minimum 0.98 0.16 0.74 510 45.9 24.4 44.5 0.28 10.8 0.00

Maximum 12.83 0.23 4.13 60.0 57.6 36.7 70.1 0.38 13.1 457

Gomera 8 Mean 1.52 0.32 1.89 1022 74.4 38.6 76.0 0.38 9.08 123

SD 0.30 0.23 1.75 462 31.7 25.6 34.8 0.30 5.61 119

Minimum 0.98 0.13 0.42 235 35.3 7.25 30.5 0.10 1.19 0.00

Maximum 1.90 0.87 4.85 1852 129 97.4 152 1.09 15.9 357

Non-Canary 36 Mean 7.64 0.27 1.40 792 32.7 28.4 74.5 0.33 19.41 322

SD 11.63 0.19 0.81 598 30.6 29.7 31.5 0.17 24.9 660

Minimum 0.40 0.10 0.18 254 9.42 7.37 27.0 0.03 0.00 0.00

Maximum 52.51 0.94 4.26 2454 155 165 147 0.90 110 2363
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Fig. 3. Mahalanobis distances: m, Canary; h, non-Canary.
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ing and classifying of the honey samples. Characteriza-

tion was based on cluster analysis and principal compo-

nent analysis, and classification on discriminant analysis

and logistic regression.

3.3. Characterization of the honey samples

3.3.1. Cluster analysis

Because of its unsupervised nature, cluster analysis is

frequently used to screen data for clustering of samples.

This method was applied to the purged database (106

samples in all) and the nine variables, using various cri-

teria for the amalgamation rule and similarity measure-

ment. Thus, the hierarchical method, with full bonding

or the farthest neighbour, and the squared Euclidian dis-
tance, which is less sensitive to outliers, failed to expose

distinct groups owing to the high scatter in the data for

the non-Canary honey samples. Fig. 4 shows the den-
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Fig. 4. Dendrogram of cluster analysis (Ward
drogram obtained by using the Ward method and the

squared Euclidian distance. Although no clear-cut class

structure is apparent, the samples clustered into two

groups: one on the right comprising mainly Canary sam-

ples and the other on the left, including Canary and non-

Canary samples. Most of the Canary samples, however,
fell on the right. More careful inspection of the samples

in each group reveals that the non-Canary samples in

the group on the right were mainly labelled ‘‘mountain’’,

‘‘holm oak’’, ‘‘linden’’ or ‘‘heather’’ honey and only one

was multifloral. Also, the Canary samples in the group

on the left came from specific areas of the islands. There-

fore, the botanical factor had a stronger weight than the

geographical factor.
A multivariate cluster analysis of variables exposed

the presence of two distinct groups: one comprising

Fe, Zn and Li and the other consisting of Cu, K, Na,

Mg, Ca and Sr. This suggests a potential relationship be-

tween these two groups of variables and sample origin

(Fig. 5).

3.3.2. Principal component analysis

Principal component analysis was used to search for

data trends; in fact, by combining the original variables,

this multivariate technique provides a partial view of the

data in a space with a reduced number of dimensions

while preserving most of their variability. In our case,

three principal components (PCs) accounted for

69.07% of the total variance; the first accounted for

39.80%, the second for 15.09% and the third for 14.18%.
As can be seen from Table 3, which lists the loadings

of the original variables in the first three PCs, the vari-

ables with the greatest weights in the third component

also had a substantial weight in the first; this suggests

that the two components are closely related, so a plot

of the first two PCs should suffice to identify any differ-

ences between Canary and non-Canary samples. As can
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Table 3

Loadings of variables in the first three principal components

Analyte Component

1 2 3

Fe �0.036 0.816 0.082

Cu 0.538 �0.047 �0.744

Zn 0.227 0.671 �0.181

K 0.938 �0.092 �0.167

Na 0.620 �0.263 0.471

Mg 0.906 �0.044 �0.271

Ca 0.818 0.055 0.193

Sr 0.651 0.074 0.544

Li 0.252 0.388 0.167
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be seen from Fig. 6, a plot of PC1 against PC2, most of

the Canary samples were characterized by the former;

also, most of a non-Canary origin were – to a lesser ex-

tent – characterized by the latter. Therefore, the Canary

samples are similar in their Cu, K, Na, Mg, Ca ad Sr

contents (PC1), whereas the non-Canary ones are char-
acterized by similar Fe, Zn and Li contents (PC2). As

expected from the peculiarities of the Canary Islands,

their honey contains larger amounts of the ions in mar-

ine aerosol (Na and K) and volcanic soil (Mg and Sr).

A comparison of the variables encompassed by the

first two PCs with the groups exposed by the cluster

analysis revealed a relationship between such groups

and the origin of the samples; in fact, the elements in
the groups coincided with those having the greatest

weights in the second and first PC, respectively.

As can also be seen from Table 3, PC1 and PC3 were

complementary; the variables with the greatest weights

in PC3 were also present (with smaller weights, however)

in PC1. A plot of PC3 vs PC2 (Fig. 7), again revealed

that the second PC characterized the non-Canary sam-

ples, whereas the third contributed no new information
with a view to further distinguishing samples.
3.4. Classification of samples

3.4.1. General classification

Discriminant analysis and logistic regression are two

appropriate techniques for statistical processing of data
when the dependent variable is categorical (i.e. nominal

or non-metric) and the independent variables are metric

(Hair, Anderson, Tatham, & Black, 1999). In our case,

the dependent variable encompassed two groups or clas-

ses, namely Canary honey and non-Canary honey.

3.4.2. Discriminant analysis

The discriminant analysis technique is used to find a
theoretical value (i.e. a linear combination of two or



Table 4

Recognition and prediction ability for model with discriminant

analysis (25% of samples in validation set)

Set Predicted group

C NC % correct

Training

C 55 0 100

NC 1 23 95.8

% global 98.7

Validation

C 19 0 100

NC 0 8 100

% global 100
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more variables) resulting in the best possible discrimina-

tion between a priori established groups. Discrimination

relies on weighting the theoretical values for each vari-

able in such a way as to maximize between-group

variance with respect to within-group variance. Discrim-

inant analysis models comprise sets of equations that
are linear combinations of the independent variables,

resulting in the maximum possible separation between

groups. The number of equations to be used is the mini-

mum between the number of independent variables and

that of groups minus 1. The discriminant function for k

sample groups and p independent variables will be of

the form

Y ij ¼ b0 þ b1X 1ij þ b2X 2ij þ � � � þ bpXpij,

where Yij is the value of the discriminant function for

case j in group i, Xkji is that of the discriminant variable

Xk for case j in group i, and bp are the coefficients ensur-

ing fulfilment of the conditions of the discriminant

analysis.

One of the requirements for correct application of

discriminant analysis is normality in the variables. The

histogram for our typified variables was somewhat
non-normal; this, which was confirmed by the Kol-

mogorov–Smirnov test, required the transformation of

the variables Fe, Cu, Zn, Na, Mg, Sr and Li, which

exhibited a non-normal distribution. The transforma-

tion used was of the logarithmic type, ln(x + 1), which

is recommended for asymmetric distributions exhibiting

very small values (Molinero, 2003).

The model was constructed from 74.5% of the honey
samples, which were randomly chosen within each

group; the remaining 25.5% were used to validate it.

Therefore, the learning matrix consisted of 70 samples

(55 Canary and 24 non-Canary) and the validation ma-

trix of 10 Canary and 8 non-Canary samples. The dis-

criminant function obtained using all the variables was

Y ij ¼ �0:553� Fetrans þ 0:861� Cutrans � 0:059

� Zntrans þ 1:492�Natrans � 0:061�Mgtrans

þ 0:359� Srtrans � 0:873� Litrans � 0:075� K

� 0:444� Ca:

The Wilks lambda value for the model was calculated

to be 0.203 (i.e. significant enough for the discriminant
function to allow two distinct groups to be established).

As can be seen from Table 4, the model exhibited

good fitting. Only one non-Canary sample in the learn-

ing matrix was misclassified, and none in the validation

matrix.

3.4.3. Logistic regression

Logistic regression, also known as logit analysis, is a

special type of regression used to predict and explain a

binary categorical variable (i.e. two groups) instead of
a metric dependent measurement. It has the advantage

over discriminant analysis that it is less markedly af-

fected by unfulfilment of the basic requisites (particu-

larly normality in the variables). The form of the

theoretical value of a logistic regression is similar to that
of the theoretical value in a multiple regression. Thus,

the theoretical value represents a unique multivariate

relation with coefficients similar to those of a regression

that are a measure of the relative influence of the predic-

tor (Hair et al., 1999); as a result, they allow the likeli-

hood of a sample falling into a state to be estimated

on the basis of various individual characteristics.

Logistic regression is used mainly to analyse dichoto-
mous variables or phenomena. The ensuing model

should allow (a) the potential relationship of one or

more independent variables (Xj) and the dependent var-

iable to be confirmed or denied, (b) the magnitude of

any such relationship to be measured and (c) the likeli-

hood of an event defined as Y = 1 to be estimated from

the values of the independent variables.

Logistic regression models are formally different from
multiple linear regression models; in fact, they are based

on the odds ratio, which is ratio of the probability in

state 1 to that in state 0:

P ðY ¼ 1Þ
1� P ðY ¼ 1Þ ¼ eB0þB1X 1þ���þBpXp ,

e being the base of the natural logarithm, B0 a constant,

Bj (j = 1,2 . . . ,p) the weights of the predictors included in
the model, Y the dependent variable and Xj the indepen-

dent variables.

If P is taken to be P(Y = 1) and the two sides of the

previous function are expressed in logarithmic form,

then

lnðP=ð1� P ÞÞ ¼ B0 þ B1X 1 þ � � � þ BnX n,

which is linear and similar to the expression for multiple

linear regression.

The model selects the body of variables best predict-

ing changes in odds ratio by using the principles of max-

imum likelihood for estimation. Unlike multiple linear

regression, the logistic regression model does not require



Table 5

Recognition and prediction ability for model with logistic regression

(25% of samples in validation set)

Set Predicted group

C NC % correct

Training

C 55 0 100

NC 0 24 100

% global 100

Validation

C 18 1 94.7

NC 0 8 100

% global 96.3
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fulfilment of the normality, homoscedasticity or linear-
ity criteria.

Logistic regression is applied in much the same way

as multiple regression: a base model is initially con-

structed that is used as a reference for comparison. In

multiple regression, the base model is established from

the mean and sum of squares; in logistic regression,

the mean is used to calculate the logarithm of the likeli-

hood rather than the sum of squares.
Our logistic regression model provided a Negerlkerke

R2 value – which is equivalent to the actual Cox and

Snell corrected R2 value (0.707) – of 1, so the model

was accurately fitted. The final mean for the fitted model

(i.e. the result of the Hoster–Lemeshow test, the null

hypothesis for which is equal actual and predicted val-

ues) also indicates that fitting was perfect as the null

hypothesis was verified at a significance level of
p = 1.000.

Finally, the goodness of the model was checked by

using it to classify the samples employed in the learning

and validation processes. As can be seen from Table 5,

the results of the fitting were very good: every sample

in the learning matrix was accurately classified and only

one in the validation matrix (a sample from the Gomera

island) was misclassified.
4. Conclusions

In this work, various multivariate techniques were

applied to metal ion contents in honey samples of differ-

ent origin with a view to establishing a potential correla-

tion between the two variables. This can be an
appropriate method for detecting fraud, adulteration

or faking without the need to use sophisticated

techniques.

Based on the results, the multivariate techniques used

allow both the characterization and classification of

Canary honey samples. Thus, principal component anal-

ysis and cluster analysis revealed that Canary samples

can be characterized in terms of their Na, K, Sr, Mg,
Ca and Cu contents. Also, discriminant analysis and lo-

gistic regression allow Canary honey to be distinguished

from non-Canary honey on the basis of its metal

content.
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